of the transitions $25 \mathrm{~b}_{\mathrm{g}} \downarrow \rightarrow 32 \mathrm{~b}_{\mathrm{u}} \downarrow$ and $32 \mathrm{~b}_{\mathrm{u}} \downarrow \rightarrow 29 \mathrm{~b}_{\mathrm{g}} \downarrow$ (Table V) and owes its intensity to $\mathrm{d}-\mathrm{d}$ component transitions on $\mathrm{Pt}(1)$ and $\mathrm{Pt}(2)$.

There remain to be assigned two very weak absorptions: an x-polarized band at 550 nm and a feature of unknown polarization at $\sim 800 \mathrm{~nm}$ (diffuse reflectance spectrum). Only one dipoleallowed transition below 3.0 eV has not been accounted for; we assign the $\sim 800-\mathrm{nm}$ feature to this transition since it is in good agreement with the predicted energy (Table V). ${ }^{27}$ The $550-\mathrm{nm}$ band must be attributed to dipole-forbidden vibronically allowed transitions. There are three transitions of this type which are in good agreement with the observed energy (Table V). Since the $550-\mathrm{nm}$ band is observed only below 30 K , the vibronic coupling presumably occurs in the excited state and causes its symmetry to become ${ }^{2} \mathrm{~B}_{\mathrm{g}}$. Mixing of this state with the nearby ${ }^{2} \mathrm{~B}_{\mathrm{g}}$ state associated with the $26 \mathrm{~b}_{\mathrm{g}} \downarrow \rightarrow 32 \mathrm{~b}_{\mathrm{u}} \downarrow$ transition transfers intensity from the $460-\mathrm{nm}$ dipole-allowed ligand-to-metal charge-transfer band to the $550-\mathrm{nm}$ band.

Discussion of Other Spectroscopic Results and Chemical Behavior. XPS, ${ }^{5 b}$ ESR, ${ }^{5 c, d}$ and the present single-crystal optical spectroscopic measurements indicate that the unpaired spin in cis-diammineplatinum α-pyridone blue is in a $\mathrm{d}_{z^{2}}$-like molecular orbital delocalized over the Pt chain. This conclusion is confirmed by the $\mathrm{X} \alpha$ calculation which shows the PPB HOMO to be delocalized over all four Pt atoms and to be comprised of overlapping $\mathrm{d}_{z^{2}}{ }^{-}, \mathrm{d}_{y z}{ }^{-}, \mathrm{p}_{z}^{+}$hybrid orbitals on $\operatorname{Pt}(1)$ and $\mathrm{d}_{z^{2}}{ }^{-}, \mathrm{s}^{-}$hybrid orbitals on $\mathrm{Pt}(2)$. Of the unpaired spin density 91% is contained within the Pt spheres, with 41% in $2 \mathrm{Pt}(1)$ and 50% in $2 \mathrm{Pt}(2)$. PPB is evidently a Robin-Day class III-A compound. ${ }^{28,29}$

Since the $\mathrm{X} \alpha$ calculation has provided a description of the valence MO's of PPB, we can now rationalize certain aspects of its behavior and point out some interesting possibilities which have not yet been realized. Addition of an electron to the σ^{*} LUMO
(26) Some of the intensity underlying the $460-\mathrm{nm}(x)$ band must be due to the forbidden x component of the $480-\mathrm{nm}(y, z)$ band, which should become manifest by the same mechanisms discussed earlier for the x component of the $680-\mathrm{nm}(y, z)$ band. It is unlikely that this could account for more than half of the observed intensity.
(27) It may be that the $\sim 800-\mathrm{nm}$ feature is an artifact and that the 27 $\mathrm{b}_{\mathrm{g}} \downarrow \rightarrow 32 \mathrm{~b}_{u} \downarrow$ transition is not observed. We reject assigning this transition to the $550-\mathrm{nm}$ band because of the large discrepancy between calculated and observed energy.
(28) Robin, M. B.; Day, P. Adv. Inorg. Chem. Radiochem. 1967, 10, 247.
(29) Wong, K. Y.; Schatz, P. N. Prog. Inorg. Chem. 1981, 28, 369.
is expected to cancel the $\operatorname{Pt}(2)-\mathrm{Pt}(2)$ bond. This expectation is realized through the observation that the one-electron reduction product of PPB is a $\mathrm{Pt}(\mathrm{II})$ dimer which associates in the solid state to a tetramer with a nonbonding $\mathrm{Pt}(2)-\mathrm{Pt}(2)$ interaction. ${ }^{23}$ Electron donation by axial ligands and excitation by light can also increase the electron density in the LUMO and promote dissociation of the $\mathrm{Pt}(2.25)$ tetramer to dimers. The effectiveness of donor anions in causing the dissociation of the tetramer has been observed, ${ }^{5 d}$ but the effect of light has not been studied. Removal of an electron from the PPB HOMO is expected to increase the strength of both $\mathrm{Pt}(1)-\mathrm{Pt}(2)$ and $\mathrm{Pt}(2)-\mathrm{Pt}(2)$ bonding. A oneelectron oxidation of PPB should therefore lead to a $\mathrm{Pt}(2.5)$ tetramer. This species has not yet been observed since in the experiments where oxidation was carried out it is likely that the tetramer was largely predissociated. ${ }^{23}$ A tetranuclear $\mathrm{Pt}(2.5)$ α-pyridone analogue, $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{NO}\right)\right]_{4}{ }^{6+}\left(\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{NO}=\right.$ α-pyrrolidonate), is known, ${ }^{3 d}$ however, and has $\mathrm{Pt}-\mathrm{Pt}$ distances of $2.70 \AA$, ca. $0.15 \AA$ shorter than in PPB. Further successive one-electron oxidations of a $\mathrm{Pt}(2.5)$ tetramer to $\mathrm{Pt}(2.75)$ and Pt (III) tetramers would also appear to be possible. The electrons for these oxidations would be removed from orbital $32 \mathrm{a}_{\mathrm{g}}$. Since orbital $32 \mathrm{a}_{\mathrm{g}}$ does not show metal-metal interaction but is $\mathrm{Pt}-$ pyridone oxygen π^{*} in character, it is expected that $\operatorname{Pt}(2.5)$, $\mathrm{Pt}(2.75)$, and $\mathrm{Pt}(\mathrm{III})$ tetramers would all have similar metal-metal bonding but that the $\mathrm{Pt}(2.75)$ and Pt (III) complexes would have slightly shorter Pt -pyridone oxygen bonds. ${ }^{30}$
Acknowledgment. This work was supported by PHS Grants CA 15826 (at Columbia University) and CA 34992 (at MIT) awarded by the National Cancer Institute (to S.J.L.), DHHS, and at the University of Kentucky by a grant from the Research Corporation (to P.E.F.). We thank Engelhard Industries for a generous loan of $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ from which the platinum compound was synthesized.

Registry No. PPB, 62782-86-9.
Supplementary Material Available: Table S1 reporting the atomic coordinates, sphere radii, and α values used in the calculation, Tables S2-S3 reporting valence and core levels, and Table S4 reporting virtual levels (18 pages).
(30) cis-Diammineplatinum(III) dimers with bridging α-pyridonate ligands have $\mathrm{Pt}-\mathrm{O}$ distances ${ }^{23}$ of $1.991-2.007 \AA$ compared to 2.016 and $2.022 \AA$ in PPB.

Theoretical Study of Dimeric Forms of Ground-State Benzene Molecules ${ }^{1 a}$

Ray Engelke, P. Jeffrey Hay,* Daniel A. Kleier, ${ }^{\text {1b }}$ and Willard R. Wadt
Contribution from Los Alamos National Laboratory, Los Alamos, New Mexico 87545. Received October 20, 1983

Abstract

The relative energies and interconversion barriers of four chemically bound dimeric forms of benzene $-p, p^{\prime}$-dibenzene (2), hexaprismane (3), and exo- and endo-0, o^{\prime}-dibenzene ($\mathbf{4}$ and 5)-are examined by using semiempirical MNDO calculations, ab initio GVB-CI techniques, and thermochemical group-additivity methods. We conclude from the calculations that the relative energies of these species are $\mathbf{3 > 4 , 5 > 2 >}$ two benzene molecules (1). The species $\mathbf{2}$ and $\mathbf{3}$ are metastable along $D_{2 h}$ pathways; the decomposition $2 \rightarrow 1$ is also found to have a large energy barrier along a $C_{2 v}$ pathway. Similar conclusions are found for the reactions $\mathbf{4} \boldsymbol{\rightarrow 1}$ and $\mathbf{5} \rightarrow \mathbf{1}$ along $C_{2 h}$ and $C_{2 v}$ paths. Of the species examined only $\mathbf{5}$ has been observed in the laboratory. Previous efforts to produce the dimers experimentally are briefly discussed.

Of the various chemically bound $(\mathrm{CH})_{12}$ isomers that could be formed from two ground-state benzene molecules (1), possibilities
include the p, p^{\prime}-dibenzene (2) and o, o^{\prime}-dibenzene (4 and 5) species and the highly strained hexaprismane (3) molecule. Of these

।

2

3

4

5
only 5 appears to have been synthesized to date. In this study we present the results of semiempirical and ab initio quantum mechanical calculations as well as thermochemical calculations on these species. The relative stabilities of these molecules and their barriers to decomposition into two benzene molecules are investigated. We examine concerted formation of $\mathbf{2 , 4}$, or 5 from 1; such reactions are Woodward-Hoffmann forbidden, since they entail $(2+2)$ or $(4+4)$ cycloaddition. Formation of hexaprismane (3) from two benzene molecules is an even more unlikely triply forbidden reaction in that three orbital crossings occur along a $D_{2 h}$ reaction path. Thus, the species we study cannot be formed from ground-state benzene molecules by concerted symmetryallowed pathways. This fact may enhance their interest because it means that if the species could be formed in some way, they would probably be quite stable. A $(\mathrm{CH})_{6}$ a nalogue of this is the Woodward-Hoffmann forbidden ground-state decay of Dewar benzene to benzene, which has a half-life of 2 days at room temperature. A nonconcerted pathway is also explored for the reaction $\mathbf{1} \rightarrow \mathbf{2}$. There is precedent for the formation of dibenzene species 2 , since the anthracene dimer (6), containing a similar

6
central moiety, has been synthesized photochemically and studied in the solid state. ${ }^{2}$ Experiments at very high pressures $(\simeq 10 \mathrm{GPa}$ $=100 \mathrm{kbars})$ also suggest the possibility of benzene dimer formation. ${ }^{3}$ A consistent interpretation of the macroscopic highpressure results can be made by assuming significant inter-ring overlap of the benzene π-electron orbitals, ${ }^{4}$ although other interpretations have also been made which do not involve dimer formation. ${ }^{5}$

We used the semiempirical method MNDO^{6} (modified neg-lect-of-diatomic-differential overlap) to explore the (CH$)_{12}$ energy surface and for coordinate optimizations. In some cases the calculations were augmented by a 2×2 configuration interaction

[^0](CI) within the MNDO scheme. In addition, ab initio GVB^{7} and GVB-CI calculations based on GVB (generalized valence bond) orbitals have been carried out along some of the reaction paths determined by the MNDO procedure. The ab initio calculations sought (1) to address difficulties associated with a single Slater determinant wave function description of the Woodward-Hoff-mann-forbidden reactions and (2) to give a more rigorous estimate of the changes in electron correlation energy which occur in the reactions. The relative energies of the various stable species examined were also calculated by using Benson's ${ }^{8}$ thermochemical group-additivity method to further strengthen the conclusions.

The accuracy of MNDO, ab initio, and group-additivity descriptions of highly strained ring systems were tested by comparing to experimental heats of formation of benzene isomers and cyclobutane.

Details of the Calculations

MNDO Calculations. The technique used for determination of geometries and reaction paths was the semiempirical MNDO method, ${ }^{6}$ in which the integrals for the Hartree-Fock calculations are retained at the neglect-of-diatomic-differential-overlap level. The MNDO procedure uses the core approximation, and molecular orbitals are approximated by the sum of a minimal basis set of valence-shell atomic orbitals. Optimizations on the energy hypersurface were accomplished by use of the finite-difference energy gradients and the Davidon-Fletcher-Powell algorithm. The calculations were begun by searching the $(\mathrm{CH})_{12}$ energy hypersurface with MNDO for stable points corresponding to inter-ring bonding. After finding the metastable structures, MNDO energy barriers to their formation from isolated benzenes were calculated along various reaction paths. For one reaction path, where biradical character was suspected, the double excitation from the highest occupied to lowest virtual orbital was included after the SCF calculation in a 2×2 MNDO CI calculation.

Ab Initio GVB and GVB-CI Calculations. To address the effects of orbital crossings and of changes in electron correlation effects along the reaction paths, the MNDO calculations were supplemented by ab initio generalized valence bond (GVB) ${ }^{7}$ and CI calculations using the GVB orbitals. These calculations were carried out by using a minimal STO-3G basis of contracted gaussians on the C and H atoms. Instead of the normal singleconfiguration Hartree-Fock description, in which each electron pair is described by a doubly occupied orbital $\phi_{1}{ }^{2}$, we employed a GVB six-pair wave function with each of the six π-electron pairs replaced by a two-configuration expansion

$$
C_{1} \phi_{1}^{2}-C_{2} \phi_{2}{ }^{2}
$$

The Hartree-Fock wave function for two benzene molecules in $D_{2 h}$ symmetry is

$$
\psi_{\mathrm{HF}}=\Phi_{\sigma} 1 b_{2 u}{ }^{2} 1 b_{3 u}{ }^{2} 1 a_{g}{ }^{2} 1 b_{3 g}{ }^{2} 1 b_{2 g}{ }^{2} 1 b_{1 u}{ }^{2}
$$

whereas the GVB wave function is

$$
\begin{array}{r}
\psi_{\mathrm{GVB}}=\Phi_{\sigma}\left[1 \mathrm{~b}_{2 \mathrm{u}}, 1 \mathrm{a}_{\mathrm{u}}\right]\left[1 \mathrm{~b}_{3 \mathrm{u}}, 2 \mathrm{~b}_{1 \mathrm{u}}\right]\left[1 \mathrm{a}_{\mathrm{g}}, 2 \mathrm{~b}_{2 \mathrm{~g}}\right]\left[1 \mathrm{~b}_{3 \mathrm{~g}}, 1 \mathrm{~b}_{1 \mathrm{~g}}\right] \times \\
{\left[1 \mathrm{~b}_{2 \mathrm{~g}}, 2 \mathrm{a}_{\mathrm{g}}\right]\left[1 \mathrm{~b}_{1 \mathrm{l}}, 2 \mathrm{~b}_{3 \mathrm{u}}\right]}
\end{array}
$$

Here, Φ_{σ} represents the doubly occupied orbitals of the σ-electron framework, and each term in brackets denotes a GVB pair, e.g.,

$$
\left[1 \mathrm{~b}_{2 \mathrm{u}}, 1 \mathrm{a}_{\mathrm{u}}\right]=C_{1} 1 \mathrm{~b}_{2 \mathrm{u}}{ }^{2}-C_{2} 1 a_{u}{ }^{2}
$$

The pairing scheme was chosen (1) to describe smoothly the orbital crossings that occur among three of the electron pairs as two benzene molecules come together in $D_{2 h}$ symmetry (as will be discussed below) and (2) to describe the remaining orbital space that is spanned by the 12π orbitals for carrying out the CI calculations.

[^1]Table I. MNDO p, p^{\prime}-Dibenzene (2) and Hexaprismane (3) Geometries ${ }^{a}$

property ${ }^{\text {e }}$	p, p^{\prime}-dibenzene ${ }^{f}$		hexaprismane ${ }^{\text {g }}$	
	$\mathrm{MNDO}^{\text {b }}$	$\underset{3^{c}}{\operatorname{MIND/}}$	$\mathrm{MNDO}^{\text {b }}$	$\overline{3_{3}^{d}}$
point group	$D_{2 h}$		$D_{6 h}$	
interplane sepn, R	2.750	2.821	1.585	1.575
double $\mathrm{C}-\mathrm{C}$ bond	1.353	1.354		
single $\mathrm{C}-\mathrm{C}$ bond, within ring	1.528	1.536	1.548	1.560
single $\mathrm{C}-\mathrm{C}$ bond, ring to ring	1.588	1.595	1.585	
angle $\mathrm{C}(1) \mathrm{C}(9) \mathrm{C}(4)$	105.1		60.0	60
angle between the $C(1) C(9) C(4)$ and	38.7		0.00	
$C(1) C(9) C(4)$ and $\mathrm{C}(1) \mathrm{C}(2) \mathrm{C}(3)$ planes				
CH bond $\mathrm{C}(1)-\mathrm{H}(14)$	1.088		1.097	1.110
CH bond $\mathrm{C}(9)-\mathrm{H}(21)$	1.112		1.097	1.110
angle $\mathrm{C}(11) \mathrm{C}(9) \mathrm{C}(21)$	107.6		121.4	122
angle $\mathrm{C}(5) \mathrm{C}(1) \mathrm{H}(14)$	111.9		121.4	122
angle $\mathrm{C}(2) \mathrm{C}(1) \mathrm{H}(14)$	123.7		115.3	

${ }^{a}$ The MNDO benzene geometry has $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{H}$ bond lengths of 1.407 and $1.090 \AA$, respectively. ${ }^{b}$ Present results. ${ }^{c}$ Reference 9. ${ }^{d}$ Reference $10 .{ }^{e}$ Lengths in \AA, angles in degrees. ${ }^{f} \mathrm{Cf}$. Figure $1 .{ }^{g} \mathrm{Cf}$. Figure 2.

Table II. Relative Energies ($\mathrm{kcal} / \mathrm{mol}$) of Dimeric Forms of Benzene As Computed by Various Methods ${ }^{a}$

method	relative energy, $\mathrm{kcal} / \mathrm{mol}$				
	$1{ }^{\text {c }}$	2^{d}	3^{e}	4	58
MNDO	0	45	38	15	16
ab initio (STO-3G)					
HF	0	28	8	14	17
GVB	0	26	5		
GVB-CI (10e ${ }^{-}$)	0	35	19		
GVB-CI (12e ${ }^{-}$)	0	29	67		
group additivity	0^{6}	41	95	52	52

${ }^{a}$ Zero-point vibrational energy changes are neglected. ${ }^{b} \Delta H_{\mathrm{f}}=39.6$ $\mathrm{kcal} / \mathrm{mol} .{ }^{c}$ Two benzenes. ${ }^{d} p, p^{\prime}$-Dibenzene. ${ }^{e}$ Hexaprismane. fexoo, o^{\prime}-Dibenzene. $g_{\text {end }}$-o, o^{\prime}-Dibenzene.

GVB-CI calculations were carried out in the space of the 12 π orbitals at two levels: (1) $12 \mathrm{e}-\mathrm{CI}$: all possible excitations were included among the 12 orbitals-this leads to a total of 28236 spin eigenfunctions of ${ }^{1} \mathrm{~A}_{\mathrm{g}}$ symmetry in the $D_{2 h}$ point group.
(2) $10 \mathrm{e}^{-} \mathrm{CI}$: all possible excitations were included subject to the restriction that the $1 b_{2 u}$ orbital remain occupied and the $1 a_{u}$ orbital remain unoccupied-this leads to only 2584 spin eigenfunctions.

In both the $12 \mathrm{e}^{-}$and $10 \mathrm{e}^{-}$CI calculations, at most eight open-shell orbitals could be present in the calculation.

Along the $C_{2 v}$ reaction path $\mathbf{2} \rightarrow \mathbf{1}$, a GVB one-pair calculation was carried out in order to describe properly the orbital crossing that occurs along the path. This calculation is analogous to the MNDO $2 \times 2 \mathrm{CI}$ described above where the HOMO and LUMO are allowed to interact, except that in the GVB calculations the orbitals and mixing coefficients are all obtained self-consistently.

Group-Additivity Calculations. The thermochemical method of Benson, ${ }^{8}$ which employs group additivities for bond heats of formation ($\Delta H_{\mathrm{f}}{ }^{\circ}$) plus estimates of ring strain, was also used to obtain $\Delta H_{\mathrm{f}}{ }^{\circ}$ values of the various stable species on the $(\mathrm{CH})_{12}$ surface. A discussion of these calculations is given in the Appendix.

Geometry Optimizations. The calculations were begun by searching the $(\mathrm{CH})_{12}$ energy hypersurface at the MNDO level for minima corresponding to stable points with inter-ring bonding. For species 2 and 3 all geometrical parameters were optimized in $D_{2 h}$ symmetry. The $D_{2 h}$ geometries of $\mathbf{2}$ and $\mathbf{3}$ were found to be unchanged when the point group constraint was relaxed to $C_{2 v}$. This process was repeated for the $\mathbf{4}$ and $\mathbf{5}$ isomers in the $C_{2 h}$ and $C_{2 v}$ point groups, respectively. The energies and geometrical forms of species 2 through $\mathbf{5}$, obtained in this way are given in Tables I-III and Figures 1-3.

Figure 1. Scale perspective of the equilibrium (2) p, p^{\prime}-dibenzene structure ($D_{2 h}$). The carbon and hydrogen nuclei are labeled 1-12 and 13-24, respectively. This structure consists of two 1,4 -cyclohexadiene rings held together by two σ bonds.

Figure 2. Scale perspective of the equilibrium (3) hexaprismane structure ($D_{6 h}$). The carbon and hydrogen nuclei are labeled 1-12 and 13-24, respectively. This structure consists of two cyclohexane rings held together by six σ bonds.

Figure 3. Scale perspective of the equilibrium (5) endo- o, o^{\prime}-dibenzene structure ($C_{2 v}$). The carbon and hydrogen nuclei are labeled 1-12 and 13-24, respectively. This structure consists of two 1,3-cyclohexadiene rings held together by two σ bonds.
$\boldsymbol{D}_{2 h}$ Reaction Path for $\mathbf{1} \boldsymbol{\rightarrow} \boldsymbol{2} \boldsymbol{3}$. The MNDO method was used to map out the reaction paths between the stable points on the $(\mathrm{CH})_{12}$ hypersurface. For the $D_{2 h}$ path corresponding to 1

Table III. MNDO o, o^{\prime}-Dibenzene Geometries ${ }^{a}$

bond lengths, \AA		bond angles, deg		angles between planes, deg
$\mathrm{C}(3)-\mathrm{C}(8)$	1.565	$\mathrm{C}(4) \mathrm{C}(3) \mathrm{C}(8)$	90.0	$\mathrm{C}(8,3,4)$ and $\mathrm{C}(4,3,9)$
$\mathrm{C}(8)-\mathrm{C}(11)$	1.501	$\mathrm{C}(4) \mathrm{C}(3) \mathrm{C}(9)$	115.9	$\mathrm{C}(4,3,9)$ and $\mathrm{C}(3,9,1)$
$\mathrm{C}(7)-\mathrm{C}(8)$	1.572	$\mathrm{C}(3) \mathrm{C}(9) \mathrm{C}(1)$	122.5	
$\mathrm{C}(5)-\mathrm{C}(6)$	1.465	$\mathrm{C}(9) \mathrm{C}(1) \mathrm{C}(2)$	121.6	
$\mathrm{C}(5)=\mathrm{C}(11)$	1.353			
$\mathrm{C}(8)-\mathrm{H}(17)$	$1.113(1.111)$	$\mathrm{C}(8) \mathrm{C}(3) \mathrm{H}(16)$	$110.8(112.9)$	$\mathrm{C}(8,3,4)$ and $\mathrm{H}(16) \mathrm{C}(3,8)$
$\mathrm{C}(11)-\mathrm{H}(23)$	1.091	$\mathrm{C}(3) \mathrm{C}(9) \mathrm{H}(21)$	116.1	$\mathrm{C}(3,9,1)$ and $\mathrm{H}(21) \mathrm{C}(9,3)$
$\mathrm{C}(5)-\mathrm{H}(18)$	1.091	$\mathrm{C}(9) \mathrm{C}(1) \mathrm{H}(14)$	121.3	$\mathrm{C}(9,1,2)$ and $\mathrm{H}(14) \mathrm{C}(1,9)$

${ }^{a}$ The point groups of the two species are endo (5) $C_{2 v}$ and exo (4) $C_{2 h}$. Generally, only the endo properties are entered in the table. When endo and exo bond lengths (angles) are different by more than $0.001 \AA\left(0.1^{\circ}\right)$, the exo values are entered enclosed by parentheses. See Figure 3 for the definition of the numbering of the nuclei positions. $\mathrm{C}(x, y, z)$ indicates a plane containing nuclei x, y, and z. ${ }^{b}$ Angles between carbon planes. ${ }^{c}$ Angles for planes involving hydrogen nuclei.
$\rightarrow \mathbf{2} \boldsymbol{\rightarrow}$, four of the carbon nuclei in each benzene ring were forced to remain coplanar throughout the path (i.e., nuclei 1-4 and 5-8 of Figure 1), and the two planes so defined were parallel. The shortest distance between the planes was taken as the reaction coordinate (R). The remaining four carbon nuclei were not forced to remain coplanar with the other carbons of their ring but could move in any way consistent with the $D_{2 h}$ point group. The carbon and hydrogen nuclei of the two ring systems were in eclipsed position when viewed along the C_{2} axis perpendicular to the carbon planes. There were three independent carbon-carbon bond distances (e.g., $\mathrm{C}(1)-\mathrm{C}(2), \mathrm{C}(1)-\mathrm{C}(9)$, and $\mathrm{C}(9)-\mathrm{C}(11)$ of Figure 1). The eight hydrogen nuclei attached to planar carbons were equivalent as were the four hydrogen nuclei attached to the four other carbons. There were two independent $\mathrm{C}-\mathrm{H}$ bond lengths (e.g., $\mathrm{C}(1)-\mathrm{H}(14)$ and $\mathrm{C}(9)-\mathrm{H}(21)$ of Figure 1). The angles associated with the hydrogens were free within $D_{2 h}$ constraints. At large separation of the carbon planes, the point group of the system becomes $D_{6 h}$. If this approach was continued for $2.75 \AA$ $<R<3.0 \AA$, one moved up a valley, the bottom of which lay higher in energy than nearby regions of the energy hypersurface. To circumvent this problem, the "flap" angles (e.g., the angle between the planes defined by $C(5), C(8), C(6)$ and $C(5), C(8)$, $\mathrm{C}(11)$ of Figure 1) were made to vary linearly with R from the $R=3.0 \AA$ value to their value at structure $2(R=2.75 \AA)$ during the energy optimization. This procedure leads out of the valley into the p, p^{\prime}-dibenzene (2) minimum.
The $D_{2 h}$ reaction path leading from 2 to hexaprismane (3) was obtained by decrementing R by $0.1 \AA$ or less, while minimizing the energy with respect to the free coordinates. No special procedures were necessary to reach the hexaprismane minimum at $R=1.59 \AA$.
A second $D_{2 h}$ reaction path leading from 1 to 2 was examined in which the reaction coordinate is the interplane $\mathrm{C}-\mathrm{C}$ distance ($\mathrm{C}(9)-\mathrm{C}(11)$ and $\mathrm{C}(10)-\mathrm{C}(12)$). For this path it was not necessary to impose any additional coordinate constraints other than the reaction coordinate. The MNDO energy barrier along this second $D_{2 h}$ path from 1 to 2 , however, is larger than that for the one described above.
$C_{2 v}$ Reaction Path for $\mathbf{1} \boldsymbol{\rightarrow 2}$. A $C_{2 v}$ reaction path $\mathbf{1} \boldsymbol{\rightarrow} \mathbf{2}$ was also investigated. The benzene rings were brought together so that one of the p, p^{\prime}-dibenzene σ bonds forms earlier than the second. Thus, some bonding energy is obtained before the energy barrier to formation of the second bond is traversed. Figure 4 shows the C_{2} structure after the first interplane σ bond has formed.

The $C_{2 v}$ reaction path had the following properties. On the entire path, carbons within the sets $C(1)$ to $C(4), C(5)$ to $C(8)$, $C(9)$ to $C(12)$, and $C(1), C(4), C(5), C(8)$ were coplanar. The C_{2} rotation axis bisects and is perpendicular to the line connecting $C(9)$ to $C(11)$ and lies in the $C(9) C(10) C(11)$ plane. There were five independent $\mathrm{C}-\mathrm{C}$ bond lengths and four independent $\mathrm{C}-\mathrm{H}$ bond distances. The bond angles were free within $C_{2 v}$ symmetry.
The $C_{2 v}$ path from 1 to 2 was as follows:
(I) Starting from 1, the distance between the parallel lines defined by $C(5)-C(8)$ and $C(1)-C(4)$ was brought to the 2 value (2.75 \AA).
(II) The angles of the two flaps defined by $\mathrm{C}(1), \mathrm{C}(4), \mathrm{C}(9)$ and $C(5), C(8), C(11)$ were brought to their 2 values.

Figure 4. Scale perspective of a biradical structure on the $C_{2 v}$ reaction path leading to p, p^{\prime}-dibenzene (2). This structure has one σ bond connecting two cyclohexadienyl radicals. Only the carbon nuclei are shown.
(III) The $\mathrm{C}-\mathrm{C}$ bond lengths of the flap carbons of step II (e.g., $C(1)-C(9))$ were extended to their 2 values.
(IV) The separation of the parallel lines defined by $\mathrm{C}(2)-\mathrm{C}(3)$ and $C(6)-C(7)$ was brought to the 2 value.
(V) The flaps defined by $\mathrm{C}(2), \mathrm{C}(3), \mathrm{C}(10)$ and $\mathrm{C}(6), \mathrm{C}(7)$, $\mathrm{C}(12)$ were brought to their $\mathbf{2}$ form. The final structure is (2) p, p^{\prime}-dibenzene.
In this procedure, after a coordinate was brought to its $\mathbf{2}$ value, it was fixed for the remainder of the reaction path. All the coordinates not fixed in this way were optimized, within the $C_{2 v}$ symmetry constraint, to give the minimum energy.
$C_{2 v}$ and $C_{2 h}$ Reaction Paths for $\mathbf{1} \boldsymbol{5}$ and $\mathbf{1} \rightarrow 4$. On the $C_{2 v}$ reaction path for $\mathbf{1 \rightarrow 5}$, the four carbon nuclei $\mathrm{C}(3), \mathrm{C}(4), \mathrm{C}(7)$, and $C(8)$ were forced to form a rectangle (see Figure 3). The reaction coordinate (R) was the shortest distance between the parallel lines defined by $C(3)-C(4)$ and $C(7)-C(8)$. Five distinct $\mathrm{C}-\mathrm{C}$ bond lengths were possible (e.g., $\mathrm{C}(7)-\mathrm{C}(8), \mathrm{C}(8)-\mathrm{C}(3)$, $C(8)-C(11), C(11)-C(5)$, and $C(5)-C(6)$ of Figure 3). Three distinct $\mathrm{C}-\mathrm{H}$ bond lengths were allowed (e.g., $\mathrm{C}(8)-\mathrm{H}(17), \mathrm{C}-$ (11) $-\mathrm{H}(23)$, and $\mathrm{C}(5)-\mathrm{H}(18)$ of Figure 3). The angles were free within the constraints of the $C_{2 v}$ point group. For the endo (5) form, the angle between the planes defined by $\mathrm{C}(3) \mathrm{C}(4) \mathrm{C}(9)$ and $\mathrm{C}(7) \mathrm{C}(8) \mathrm{C}(11)$ was less than 180°.

For the $C_{2 h}$ reaction path for $\mathbf{1 \rightarrow 4}$ (exo-o,o'-dibenzene), all the statements for the endo path apply, except the angle between the planes defined by $\mathrm{C}(3) \mathrm{C}(4) \mathrm{C}(9)$ and $\mathrm{C}(7) \mathrm{C}(8) \mathrm{C}(11)$ of Figure 3 was fixed at 180°.

Results and Discussion

Orbital Considerations. If one considers the π orbitals of two benzene molecules (1) along the $D_{2 h}$ reaction path to p, p^{\prime}-dibenzene (2) and thence to hexaprismane (3), the schematic orbital

Figure 5. Schematic molecular orbital correlation diagram along the $D_{2 h}$ dimerization path.
correlation diagram shown in Figure 5 is obtained. The two sets of $\mathrm{a}_{1 \mathrm{u}}$ and $\mathrm{e}_{\mathrm{g}} \pi$ orbitals on each benzene molecule produce the ($1 a_{g}, 1 b_{1 u}$) and ($1 b_{2 u}, 1 b_{3 u}, 1 b_{3 g}, 1 b_{2 g}$) orbitals, respectively, for two interacting $\mathrm{C}_{6} \mathrm{H}_{6}$ molecules in the reduced $D_{2 h}$ symmetry. Similarly the e_{u} and $b_{2 g} \pi^{*}$ orbitals of benzene yield the virtual $\left(2 \mathrm{a}_{g}, 1 \mathrm{~b}_{1 g}, 2 \mathrm{~b}_{1 \mathrm{u}}, 2 \mathrm{~b}_{3 \mathrm{~g}}\right.$) and ($2 \mathrm{~b}_{3 \mathrm{u}}, 1 \mathrm{a}_{\mathrm{u}}$) orbitals shown in the figure.

Formation of the two inter-ring σ bonds requires a crossing between the occupied $1 \mathrm{~b}_{2 g}$ and virtual $2 \mathrm{a}_{\mathrm{g}}$ orbitals, since the former orbital is antibonding between the rings, while the latter orbital is bonding in character. In the GVB calculations, therefore, the [$\left.1 \mathrm{~b}_{2 \mathrm{~g}}, 2 \mathrm{a}_{\mathrm{g}}\right]$ pair is able to allow the smooth change in configuration from $\left(1 \mathrm{~b}_{2 \mathrm{~g}}\right)^{2}$ to $\left(2 \mathrm{a}_{\mathrm{g}}\right)^{2}$ along the reaction path for this Wood-ward-Hoffmann forbidden $(4+4)$ addition.

Similarly, hexaprismane formation along the $D_{2 h}$ path requires an orbital crossing between two pairs of orbitals- $\left[1 b_{1 u}, 2 b_{3 u}\right]$ and [$1 b_{3 g}, 1 b_{1 g}$] shown in Figure 5. These pairs are treated in an equivalent manner to the previous orbital pair by the GVB procedure. The remaining π^{*} orbitals, which remain formally unoccupied for this reaction, are obtained by arbitrary pairings with the occupied orbitals as discussed in the section on calculational details.

Stable Dimers of Benzene. We first consider local minima on the hypersurface corresponding to metastable $(\mathrm{CH})_{12}$ isomers. Two forms corresponding to face-to-face chemically bound benzene dimers were found $-p, p^{\prime}$-dibenzene (2), tricyclo $\left[4.2 .2 .2^{2,5}\right]$ dode-ca-3,7,9,11-tetraene, with an interplane carbon separation of 2.75 \AA, and hexaprismane (3), heptacyclo[6.4.0.0 $0^{2,7} \cdot 0^{3.6} \cdot 0^{4,11} \cdot 0^{5.10} \cdot 0^{9,12}$]dodecane, with an interplane separation of $1.59 \AA$. The structural parameters for both molecules are given in Table I. The numbering of the nuclei is that used in Figures 1 and 2. The bond lengths and angles, which are similar to the values derived earlier by Dougherty, Schlegel, and Mislow ${ }^{9}$ for 2 and Minkin and Minyaev ${ }^{10}$ for 3 using MINDO/ 3 calculations, reflect normal $\mathrm{C}-\mathrm{C}$ single and double bond lengths. Compounds 2 and $\mathbf{3}$ were still found to be metastable when the point group was relaxed to $C_{2 v}$.

If we compare the relative stabilities (see Table II) of these species, MNDO predicts $\mathbf{2}$ and $\mathbf{3}$ to be comparable in energy but thermodynamically unstable relative to two benzenes (1) by 38

[^2]Table IV. Heats of Reaction (kcal/mol) for $2 \mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{C}_{4} \mathrm{H}_{8}$

method	basis set	geometries	ΔH_{f}	ref
experiment group additivity			-18.7	11
MNDO	minimal	optimized	-42.6	this work
HF	STO-3G	optimized	-79.1	12 a
HF	STO-3G	from MNDO	-79.9^{b}	this work
GVB-CI	STO-3G	from MNDO	-36.9^{c}	this work
HF	$4-31 G$	optimized	-13.6	$12 \mathrm{~b}, \mathrm{c}$
HF	DZ^{a}	from MNDO	-14.3^{d}	this work
GVB-CI	DZ^{a}	from MNDO	$+10.9^{e}$	this work

${ }^{a} \mathrm{DZ}=(9 \mathrm{~s} 5 \mathrm{p} / 4 \mathrm{~s}) /[3 \mathrm{~s} 2 \mathrm{p} / 2 \mathrm{~s}]$ from: Dunning, T. H., Jr.; Hay, P. J. In "Modern Theoretical Chemistry"; Schaefer, H. F., 1ll, Ed., Plenum Press: New York, 1977; Vol. III. ${ }^{b} E\left[2\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]=-154.14416$ hartrees; $E\left(\mathrm{C}_{4} \mathrm{H}_{8}\right)=-154.27156$ hartrees. ${ }^{c} E\left[2\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]=-154.23228$ hartrees; $E\left(\mathrm{C}_{4} \mathrm{H}_{8}\right)=-154.29102$ hartrees. ${ }^{d} E\left[2\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]=$ -156.02155 hartrees; $E\left(\mathrm{C}_{4} \mathrm{H}_{8}\right)=-156.04428$ hartrees. ${ }^{e} E\left[2\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]=$ -156.08074 hartrees; $E\left(\mathrm{C}_{4} \mathrm{H}_{8}\right)=-156.06329$ hartrees.
and $45 \mathrm{kcal} / \mathrm{mol}$, respectively. The most extensive GVB-Cl calculations place hexaprismane (3) at higher energy ($67 \mathrm{kcal} /$ mol) than p, p^{\prime}-dibenzene (2) ($29 \mathrm{kcal} / \mathrm{mol}$), relative to two ground-state benzene molecules (taken as $0 \mathrm{kcal} / \mathrm{mol}$). The latter ordering is also in accord with the group additivity estimates (see Appendix) of the relative stabilities of $3(95 \mathrm{kcal} / \mathrm{mol})$ and $2(41$ $\mathrm{kcal} / \mathrm{mol}$). While the theoretical methods all give relatively consistent energies for 2, the MNDO, HF, and GVB procedures, apparently, overestimate the stability of 3 . The GVB-CI ($12 \mathrm{e}^{-}$) hexaprismane energy is significantly nearer the thermochemical estimate than are other quantum-mechanical results. We shall return to this point in the next section.

The $o, 0^{\prime}$-dibenzene species (4 and 5), exo- and endo-tricyclo[6.4.0.0.2,7] dodeca-3,5,9,11-tetraene, were also found to correspond to local energy minima (see Table II) on the (CH) 12 hypersurface. Their structural parameters are given in Table III. These isomers have stabilities comparable to 2-about $10 \mathrm{kcal} / \mathrm{mol}$ less stable according to group additivity estimates but about $30 \mathrm{kcal} / \mathrm{mol}$ more stable according to MNDO.

Assessment of Thermochemical Stabilities. Since most of the $(\mathrm{CH})_{12}$ isomers are considerably strained (with the possible exception of 2), one can ask whether the theoretical estimates are providing reliable energies for these systems. There are at least two studies of interest-(1) comparing two $\mathrm{C}-\mathrm{C}$ double bond energies with the energy of a strained four-member ring system

Table V. Relative Energies ($\mathrm{kcal} / \mathrm{mol}$) of $\mathrm{C}_{6} \mathrm{H}_{6}$ Isomers

	HF^{a}			
isomer	MNDO	STO-3G	expt	group additivity
7, benzene $\left(D_{6 h}\right)$	0.0	0.0	0.0	0.0
8, benzvalene $\left(C_{2 v}\right)$	80.4	72.5	<91.2	69.4
9, Dewar benzene $\left(C_{2 v}\right)$	68.1	79.0	59.5	72.1
10, triprismane $\left(D_{3 h}\right)$	100.7	95.3	91.2	102.6

${ }^{a}$ Calculated at the MNDO optimized geometries.
(e.g., $2 \mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{C}_{4} \mathrm{H}_{8}$) and (2) comparing the energies of various $(\mathrm{CH})_{6}$ isomers.

Table IV compares various calculated heats of reaction for $2 \mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{C}_{4} \mathrm{C}_{8}$ to experiment. All the calculations (including MNDO) which employ minimal basis sets significantly overestimate the stability of the strained four-membered ring of cyclobutane. Earlier Pople and co-workers ${ }^{12 \mathrm{a}}$ considered the isodesmic reaction, $2 \mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{C}_{2} \mathrm{H}_{6}$, and demonstrated that STO-3G basis sets provide a poor description of the π bond in ethylene. This problem is ameliorated by using double- ζ (DZ) bases, which can describe the carbon 2 p orbitals involved in σ and π bonds equivalently (cf. Table IV). There is also a significant differential electron correlation error between the π bonds of the two ethylenes and the two new σ bonds of cyclobutane. The GVB-CI is designed to reduce this error, leading to a better description of the two ethylenes. The DZ HF calculations give fortuitously good heats of reaction, while the DZ GVB-CI calculations actually lead to the wrong sign for the heat of formation. Polarization basis functions are needed to describe the strained four-membered rings in cyclobutane properly and to obtain a good heat of reaction.

The results in Table IV indicate that both the MNDO and STO-3G GVB-CI calculations should overestimate the stability of hexaprismane with its six four-membered rings relative to two benzenes. The $(\mathrm{CH})_{12}$ results support this conclusion (see Table II) since hexaprismane (3), which possesses six such rings, lies $7 \mathrm{kcal} / \mathrm{mol}$ lower than dibenzene at the MNDO level, $38 \mathrm{kcal} / \mathrm{mol}$ higher at the GVB-CI ($12 \mathrm{e}^{-}$) level, compared with $54 \mathrm{kcal} / \mathrm{mol}$ higher using thermochemical group additivities, which may be high by $10-20 \mathrm{kcal} / \mathrm{mol}$ (cf. Appendix). For the o, o^{\prime}-dibenzenes (4 and 5), with one four-membered ring, the MNDO results are about $35 \mathrm{kcal} / \mathrm{mol}$ lower than the group additivity estimates. Note that one cannot make a quantitative correction to the MNDO $0, O^{\prime}$-dibenzene energy by use of the error in the MNDO energy for cyclobutane.

For the isomers benzene (7), benzvalene (8), Dewar benzene (9), and triprismane (10), a similar comparison can be made

7

9

8

10
between strained ring systems, since experimental results for heats of isomerization are available. ${ }^{13}$ It is of interest in the comparison that Dewar benzene (9) and triprismane (10) bear a resemblance to p, p^{\prime}-dibenzene (2) and hexaprismane (3), respectively. In Table V , quantum mechanical, group-additivity, and experimental results

[^3] 1971, 93, 808. (b) Hehre, W. J.; Pople, J. A. Ibid. 1975, 97, 6941 . (c) Cremer, D. Ibid. 1977, 99, 1307.
(13) Oth, J. F. M. Agnew Chem., Int. Ed. Engl. 1968, 7, 646.

Figure 6. MNDO and GVB energies along the $D_{2 h}$ reaction path leading from $1 \rightarrow 2 \rightarrow 3$.

Table VI. Barriers to Formation Relative to Two Benzene Molecules As Computed from Various Methods

	barrier to formation, kcal/mol ${ }^{a}$			
method	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
MNDO	$127\left(D_{2 h}\right)^{b}$	$265\left(D_{2 h}\right)$	$159\left(C_{2 h}\right)$	$127\left(C_{2 v}\right)$
	$161\left(C_{2 v}\right)$			
2×2 MNDO CI	$97\left(C_{2 v}\right)$			
ab initio, STO-3G				
GVB	$130\left(D_{2 h}\right)$	$275\left(D_{2 h}\right)$		
GVB-CI $\left(10 \mathrm{e}^{-}\right)$	$97\left(D_{2 h}\right)$	$247\left(D_{2 h}\right)$		
GVB-CI $\left(12 \mathrm{e}^{-}\right)$	$95\left(D_{2 h}\right)$	$264\left(D_{2 h}\right)$		

${ }^{a}$ Relative to two benzenes. ${ }^{b}$ Point group symmetry enforced along the reaction path.
for the energies of $\mathbf{7 - 1 0}$ are compared. The MNDO energies correspond to fully optimized geometries within the indicated point groups. The HF energies were evaluated at the MNDO geometries in order to parallel the procedure used in calculating the dimer energies. The experimental energies are for structures that were fully methylated; in the calculations, we neglected any alteration in the heats of isomerization due to the presence of methyl groups rather than hydrogens.
The agreement of the various energies for these strained systems is superior to what would be expected from the $2 \mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{C}_{4} \mathrm{H}_{8}$ analysis given above. The group-additivity energies are in good agreement with the MNDO values except for benzvalene (8). For 9 and 10 both MNDO and group-additivity energies are high relative to experiment by about $10 \mathrm{kcal} / \mathrm{mol}$. The scatter in the minimal set HF results is somewhat worse than for the other methods.

We do not understand why the energies given by the various techniques are in better agreement for these smaller strained systems than they are for the dimers. The agreement of the various results for $\mathbf{1 0}$ is perplexing because this system contains three cyclobutane rings, for which MNDO is known to give inferior results. An unquestioning acceptance of the benzene isomer results would suggest MNDO energy errors of about $\pm 20 \mathrm{kcal} / \mathrm{mol}$ for systems as large as 2-5.
Reaction Barriers. We first consider the $D_{2 h}$ reaction path from 1 to 2 to $\mathbf{3}$ in which the interplane separation (defined by the four carbon nuclei which remain planar in each ring) defines the reaction coordinate (R) shown in Figure 6. Along this path, distinct barriers (arising from the orbital crossings discussed above) exist between each of the three isomers. The barriers (see Table VI) appear more cusp-like in the single-determinant MNDO calculations than in the GVB calculations, where the wave function

Table VII. CI Coefficients from GVB Calculations along the $D_{2 h}$ Reaction Path

R, \AA	pair I		pair 2		pair 3	
	$1 \mathrm{~b}_{2 \mathrm{~g}}$	$2 \mathrm{a}_{8}$	$1 \mathrm{~b}_{3 \mathrm{~g}}$	$1 \mathrm{~b}_{1 \mathrm{~g}}$	$1 \mathrm{~b}_{1 u}$	$2 \mathrm{~b}_{34}$
$3.0{ }^{\text {a }}$	0.9968	0.0805	0.9968	0.0802	0.9999	0.0161
2.93	0.9961	0.0881	0.9967	0.0817	0.9999	0.0169
2.87	0.9932	0.1167	0.9965	0.0831	0.9998	0.0193
$2.84{ }^{\text {b }}$	0.2406	0.9706	0.9977	0.0677	0.9995	0.0324
2.81	0.1004	0.9949	0.9977	0.0678	0.9992	0.0389
$2.75{ }^{\text {c }}$	0.0430	0.9991	0.9975	0.0671	0.9988	0.0485
2.50	0.0364	0.9993	0.9972	0.0754	0.9986	0.0531
2.30	0.0321	0.9995	0.9958	0.0914	0.9981	0.0618
2.20	0.0300	0.9995	0.9942	0.1080	0.9975	0.0702
2.10	0.0280	0.9936	0.9902	0.1396	0.9964	0.0847
2.00	0.0261	0.9997	0.9737	0.2279	0.9925	0.1195
1.90	0.0245	0.9997	0.1257	0.9921	0.1592	0.9872
$1.80{ }^{\text {b }}$	0.0224	0.9297	0.0725	0.9974	0.0721	0.9974
1.70	0.0235	0.9997	0.0365	0.9993	0.0330	0.9995
$1.60{ }^{\text {d }}$	0.0217	0.9998	0.0275	0.9996	0.0254	0.9997
1.50	0.0201	0.9998	0.0213	0.9998	0.0200	0.9998

Figure 7. MNDO, MNDO $2 \times 2 \mathrm{CI}$, and GVB-CI energies along the $C_{2 v}$ reaction path leading from $\mathbf{1} \rightarrow 2$. The roman numerals on the figure correspond to parts of the reaction coordinate described in the text. In particular, the point denoted by III corresponds to the structure shown on Figure 4.
passes smoothly between the configurations involved in the orbital crossings. The weighting coefficients of these configurations from GVB calculations are given in Table VII; the changes of configuration are observed to be quite abrupt along the reaction coordinate.

The calculated barriers to interconversion of these species (Table VI) are sufficiently high- $95 \mathrm{kcal} / \mathrm{mol}$ between 1 and 2,264 $\mathrm{kcal} / \mathrm{mol}$ between $\mathbf{3}$ and $\mathbf{1}$, and $235 \mathrm{kcal} / \mathrm{mol}$ between $\mathbf{2}$ and 3-to make the kinetic stability of these species likely, if there are no significantly lower energy decomposition routes. For the second $D_{2 h}$ reaction path from 1 to 2 described above (where $R=C$ -(9)-C(11)), a MNDO reaction barrier of $139 \mathrm{kcal} / \mathrm{mol}$ is obtained; this is higher by $12 \mathrm{kcal} / \mathrm{mol}$ than that for the first $D_{2} h$ path. It is interesting that the energy barrier between 2 and 3 is roughly twice that between $\mathbf{1}$ and 2 ; i.e., the energy barrier corresponding to the process involving two orbital crossings is about twice that for the one with one crossing. This may mean that there are lower symmetry paths between 2 and 3 , on which the orbital crossings occur separately, which are of significantly lower energy.

An alternate reaction path was explored for the reaction $1 \rightarrow$ 2, where a lower symmetry $C_{2 v}$ path between 1 and 2 was also studied (Figure 4). The $C_{2 v}$ reaction path was defined in a somewhat arbitrary manner. The resulting $C_{2 v}$ cut on the potential energy surface (Figure 7) is not a significantly lower energy pathway to decomposition than the $D_{2 h}$ path. MNDO $2 \times 2 \mathrm{CI}$ calculations at the MNDO geometrical coordinates produced a still large, but significantly reduced, reaction barrier on the $C_{2 v}$

Figure 8. MNDO energies along the $C_{2 h}$ and $C_{2 v}$ reaction paths from 1 $\rightarrow 4$ and $1 \rightarrow 5$.
path. Ab initio calculations using a two-configuration GVB-1 wave function also produced a large reaction barrier ($\simeq 120 \mathrm{kcal} / \mathrm{mol}$) along the MNDO $D_{2 v}$ path.
Concerted addition of two benzenes to form the $0,0^{\prime}$-dibenzene molecules ($\mathbf{4}$ and 5) also leads (Figure 8) to high-activation barriers ($130-160 \mathrm{kcal} / \mathrm{mol}$) as expected for a Woodward-Hoffmann forbidden $(2+2)$ cycloaddition.

Comments on Experimental Synthesis of the Dimers

Numerous chemically bound $(\mathrm{CH})_{12}$ structures have been synthesized. ${ }^{14}$ To our knowledge only species 5 of those considered here has been experimentally isolated. ${ }^{15}$ Attempts at synthesis of $\mathbf{2}$ have been made; these resulted in a structure close to but not the desired one. ${ }^{16}$ It is possible that $\mathbf{2}$ has been produced in
(14) (a) Scott, L. T.; Jones, M., Jr. Chem. Rev. 1972, 72, 181 and references therein. (b) Greenberg, A.; Liebman, J. F. "Strained Organic Molecules"; Academic Press: New York, 1978; p 214 and references therein.
(15) (a) Oth, J. F. M.; Rottele, H.; Schroder G. Tetrahedron Lett. 1970, No. 1, 61. (b) Berson, J. A.; Davis, R. F. J. Am. Chem. Soc. 1972, 94, 3658.
very high-pressure shock-wave experiments. ${ }^{3 a, b}$ However, this is not certain because of the difficulty of making microscopic observations in such experiments. An important aspect of the shock-wave work is that for every arene experimentally tested, ${ }^{3 a, c}$ one finds the same evidence of a possible dimerization process. Therefore, the dimerization mechanism leading to 2 may apply to arene systems in general.

The calculated high barriers along the reaction coordinates for 2,3, and $\mathbf{4} \rightarrow 1$ suggest that these species may be experimentally realizable. In this regard, it is important that the calculated barriers are also spatially wide as this prevents disintegration to 1 by tunneling. It is of interest that cubane (11) has been synthesized ${ }^{17}$ and that it is as highly strained as the most strained structure we consider (3). Application of the group additivity

11

12
method to 11 and 3 indicates that the ring strain for both of these systems is about $+160 \mathrm{kcal} / \mathrm{mol}$. Thus, the strain energies of $\mathbf{2}$, $\mathbf{3}$, and $\mathbf{4}$ alone may not preclude their existence.

Finally, biphenylene (12), which is quite close in structure to the o, o^{\prime}-dibenzenes $(\mathbf{4}, \mathbf{5})$, was synthesized long ago ${ }^{18}$ and may be a reasonable place to start a synthesis route to some of the structures considered here. It does not seem to have been used as a precursor molecule in the synthesis paths used to date.

It may be possible to produce excited electronic states of the dimers by photochemically exciting one of the reacting benzene molecules; such processes could be Woodward-Hoffmann allowed and thus would avoid the large reaction barriers of the ground-state reactions. Relaxation of the excited dimer to its ground electronic state would, perhaps, yield one the structures studied in this paper.
Appendix: Thermochemical Group-Additivity Calculations
For the strained ring structures considered in this paper, the group-additivity estimate of the heat of formation is

$$
\Delta H_{\mathrm{f}}^{\circ}(\text { ring })=\sum_{i} \Delta H_{\mathrm{f}}^{\circ}(\text { bond })_{i}+\sum_{j} \Delta H_{\mathrm{f}}^{\circ}(\text { strain })_{j}
$$

where $\Delta H_{\mathrm{f}}{ }^{\circ}$ (ring) is the heat of formation estimate for the ring, $\Delta H_{\mathrm{f}}{ }^{\circ}$ (bond $)_{i}$ is the contribution to the heat of formation for the bonding characteristic of the $i^{\text {th }}$ carbon, and $\Delta H_{\mathrm{f}}{ }^{\circ}(\text { strain })_{j}$ is a
(16) Yang, N. C.; Neywick, C. V.; Srinivasachar, K. Tetrahedron Lett. 1975, No. 49, 4313.
(17) (a) Eaton, P. E.; Cole, T. W., Jr., J. Am. Chem. Soc. 1964, 86, 962. (b) Fleischer, E. B. Ibid. 1964, 86, 3889.
(18) Lothrop, W. C. J. Am. Chem. Soc. 1941, 63, 1187; 1942, 64, 1698.
correction corresponding to the ring strain of the $j^{\text {th }}$ small ring in the larger structure. The advantage of this procedure is that information on only a small number of bond classes and on the strain energy for a few small ring systems allows one to compute $\Delta H_{f}{ }^{\circ}$ values for many complex ring structures.

As an example of this approach, consider triprismane (10) for which the $\Delta H_{f}{ }^{\circ}$ estimate is

$$
\begin{aligned}
& \Delta H_{\mathrm{f}}^{\circ}(10)=6 \Delta H_{\mathrm{f}}^{\circ}\left[\mathrm{C}-(\mathrm{C})_{3}(\mathrm{H})\right]+3 \Delta H_{\mathrm{f}}^{\circ}[\text { cyclobutane }]+ \\
& 2 \Delta H_{\mathrm{f}}^{\circ}[\text { cyclopropane }]
\end{aligned}
$$

When numerical values ${ }^{8}$ are entered in this equation, one finds $\Delta H_{\mathrm{f}}{ }^{\circ}(\mathbf{1 0})=122.4 \mathrm{kcal} / \mathrm{mol}$. The strain terms contribute +133.8 $\mathrm{kcal} / \mathrm{mol}$ and therefore are critically important in obtaining an accurate $\Delta H_{f}{ }^{\circ}$ estimate. When the measured heats of formation ${ }^{13}$ for hexamethyltriprismane are compared, this approach overestimates the strain energy by 15%. Similar errors are found for the strain energy in hexamethyl(Dewar benzene). Hence, the thermochemical estimates for p, p^{\prime}-dibenzene (2) should be accurate to $\pm 5 \mathrm{kcal} / \mathrm{mol}$ (small strain energy), while those for hexaprismane (3) may be high by $20 \mathrm{kcal} / \mathrm{mol}$.

In the case of 2 , we had to estimate two of the $\Delta H_{\mathrm{f}}{ }^{\circ}$ contributions using values in ref 8 . These were (1) the bond contribution for the interring σ bonds, where we used

$$
\begin{aligned}
& \Delta H_{\mathrm{f}}^{\circ}\left[\mathrm{C}-\left(\mathrm{C}_{\mathrm{d}}\right)_{2}(\mathrm{C})(\mathrm{H})\right] \simeq \Delta H_{\mathrm{f}}^{\circ}\left[\mathrm{C}-\left(\mathrm{C}_{\mathrm{d}}\right)_{2}(\mathrm{H})_{2}\right]+ \\
& \Delta H_{\mathrm{f}}^{\circ}\left[\mathrm{C}-\left(\mathrm{C}_{\mathrm{d}}\right)(\mathrm{C})_{2}(\mathrm{H})\right]-\Delta H_{\mathrm{f}}^{\circ}\left[\mathrm{C}-\left(\mathrm{C}_{\mathrm{d}}\right)(\mathrm{C})(\mathrm{H})_{2}\right] \simeq \\
& -1.01 \mathrm{kcal} / \mathrm{mol}
\end{aligned}
$$

and (2) the ring-strain contribution for the two 1,5-cyclooctadiene rings in 2, where we used

$$
\begin{gathered}
\Delta H_{\mathrm{f}}^{\circ}[1,5 \text {-cyclooctadiene }] \simeq(1 / 2)\left[\Delta H_{\mathrm{f}}^{\circ}(\text { cis-cyclooctene })+\right. \\
\left.\Delta H_{\mathrm{f}}^{\circ}(1,3,5 \text {-cyclooctatriene })\right] \simeq+7.5 \mathrm{kcal} / \mathrm{mol}
\end{gathered}
$$

Using this approach, we obtained the group-additivity estimates given in Tables II, IV, and V.

There are some shortcomings in the group-additivity technique in application to our systems. For example, in computing the ring-strain energy contribution of the two cyclohexane rings in 3, we used Benson's value of $0 \mathrm{kcal} / \mathrm{mol}$. This value corresponds to nonplanar equilibrium cyclohexane. However, the cyclohexane rings in $\mathbf{3}$ are planar. Similarly, the inter-ring $\mathrm{C}-\mathrm{C}$ single bonds in 4 are not of standard length, yet we use a $\Delta H_{\mathrm{f}}{ }^{\circ}$ contribution corresponding to a standard single $\mathrm{C}-\mathrm{C}$ bond. These simplifications must result in some inaccuracies in the estimates. Further, it is also important to realize that the group-additivity method, at present, is only applicable to equilibrium structures, and hence cannot give information on system energy at general points on a reaction path (e.g., at a transition state).

Registry No. 1, 6842-25-7; 2, 69122-64-1; 3, 4493-26-9; 4, 21657-71-6; 5, 91279-91-3; $\mathrm{C}_{2} \mathrm{H}_{4}$, 74-85-1.

[^0]: (1) (a) This work was supported by the Department of Energy and by the Air Force Office of Scientific Research (under Contract AFOSR ISSA-8200011). (b) Present address: Biological Sciences Research Center, Shell Development Co., Modesto, CA 95352.
 (2) Ehrenberg, M. Acta Crystallogr. 1966, 20, 177.
 (3) (a) Dick, R, D. J. Chem. Phys. 1970, 52, 6021; 1979, 7l, 3203. (b) Engelke, R.; Hay, P. J.; Kleier, D. A.; Wadt, W. R. Ibid. 1983, 79, 4367. (c) Warnes, R. H. Ibid. 1970, 53, 1088.
 (4) Pucci, R.; March, N. H. J. Chem. Phys. 1981, 74, 1373.
 (5) Ree, F. H. J. Chem. Phys. 1979, 70, 974.
 (6) (a) Dewar, M. J. S.; Thiel, W. J. Am. Chem. Soc. 1979, 99, 4899. (b) Thiel, W. QCPE 1979, ll, 379.

[^1]: (7) (a) Goddard, W. A., III; Dunning, T. H., Jr.; Hunt, W. J.; Hay, P. J. Acc. Chem. Res. 1973, 6, 368 . (b) Hay, P. J.; Hunt, W. J.; Goddard, W. A. III, J. Am. Chem. Soc. 1972, 94, 8293.
 (8) Benson, S. W. "Thermochemical Kinetics"; Wiley: New York, 1976; Chapter 2.

[^2]: (9) Dougherty, D. A.; Schlegel, H. B.; Mislow, K. Tetrahedron 1978, 14, 1441.
 (10) Minkin, V. I.: Minyaev, R. M. Zh. Org. Khim. 1981, I7, 221.
 (11) Benson, S. W.; O'Neal, H. E. "Kinetic Data on Gas Phase Unimolecular Reactions"; NSRDS-NBS21: Washington. 1970; p 269.

[^3]: (12) (a) Lathan, W. A.; Hehre, W. J.; Pople, J. A. J. Am. Chem. Soc.

